Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 14: 1085883, 2023.
Article in English | MEDLINE | ID: covidwho-2251618

ABSTRACT

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Subject(s)
COVID-19 , Animals , Humans , Macaca mulatta , SARS-CoV-2 , Immunization, Passive/methods , COVID-19 Serotherapy
2.
Commun Biol ; 5(1): 1380, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2186102

ABSTRACT

Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.


Subject(s)
COVID-19 , Animals , COVID-19/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets , Inflammation/metabolism , Primates
3.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1992934

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Subunit
4.
PLoS Pathog ; 18(7): e1010618, 2022 07.
Article in English | MEDLINE | ID: covidwho-1923717

ABSTRACT

The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.


Subject(s)
COVID-19 , Aerosols , Animals , Chlorocebus aethiops , Disease Models, Animal , Humans , Lung/pathology , Macaca mulatta , SARS-CoV-2
5.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1883016

ABSTRACT

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Macaca mulatta
6.
Viruses ; 14(4)2022 04 06.
Article in English | MEDLINE | ID: covidwho-1776363

ABSTRACT

The inhalation of ambient SARS-CoV-2-containing bioaerosols leads to infection and pandemic airborne transmission in susceptible populations. Filter-based respirators effectively reduce exposure but complicate normal respiration through breathing zone pressure differentials; therefore, they are impractical for long-term use. OBJECTIVES: We tested the comparative effectiveness of a prototyped miniaturized electrostatic precipitator (mEP) on a filter-based respirator (N95) via the removal of viral bioaerosols from a simulated, inspired air stream. Methods: Each respirator was tested within a 16 L environmental chamber housed within a Class III biological safety cabinet within biosafety level 3 containment. SARS-CoV-2-containing bioaerosols were generated in the chamber, drawn by a vacuum through each respirator, and physical particle removal and viral genomic RNA were measured distal to the breathing zone of each device. MEASUREMENTS AND MAIN RESULTS: The mEP respirator removed particles (96.5 ± 0.4%), approximating efficiencies of the N95 (96.9 ± 0.6%). The mEP respirator similarly decreased SARS-CoV-2 viral RNA (99.792%) when compared to N95 removal (99.942%), as a function of particle removal from the airstream distal to the breathing zone of each respirator. CONCLUSIONS: The mEP respirator approximated the performance of a filter-based N95 respirator for particle removal and viral RNA as a constituent of the SARS-CoV-2 bioaerosols generated for this evaluation. In practice, the mEP respirator could provide equivalent protection from ambient infectious bioaerosols as the N95 respirator without undue pressure drop to the wearer, thereby facilitating its long-term use in an unobstructed breathing configuration.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , RNA, Viral , Static Electricity , Ventilators, Mechanical
7.
Emerg Microbes Infect ; 11(1): 629-638, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1665837

ABSTRACT

Mounting evidence indicates that SARS-CoV-2 can infect multiple systemic tissues, but few studies have evaluated SARS-CoV-2 RNA dynamics in multiple specimen types due to their reduced accessibility and diminished performance of RT-qPCR with non-respiratory specimens. Here, we employed an ultrasensitive CRISPR-RT-PCR assay to analyze longitudinal mucosal (nasal, buccal, pharyngeal, and rectal), plasma, and breath samples from SARS-CoV-2-infected non-human primates (NHPs) to detect dynamic changes in SARS-CoV-2 RNA level and distribution among these specimens. We observed that CRISPR-RT-PCR results consistently detected SARS-CoV-2 RNA in all sample types at most time points post-infection, and that SARS-CoV-2 infection dose and administration route did not markedly affect the CRISPR-RT-PCR signal detected in most specimen types. However, consistent RT-qPCR positive results were restricted to nasal, pharyngeal, and rectal swab samples, and tended to decrease earlier than CRISPR-RT-PCR results, reflecting lower assay sensitivity. SARS-CoV-2 RNA was detectable in both pulmonary and extrapulmonary specimens from early to late infection by CRISPR-RT-PCR, albeit with different abundance and kinetics, with SARS-CoV-2 RNA increases detected in plasma and rectal samples trailing those detected in upper respiratory tract samples. CRISPR-RT-PCR assays for SARS-CoV-2 RNA in non-respiratory specimens may thus permit direct diagnosis of suspected COVID-19 cases missed by RT-PCR, while tracking SARS-CoV-2 RNA in minimally invasive alternate specimens may better evaluate the progression and resolution of SARS-CoV-2 infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Primates , RNA, Viral/analysis , Sensitivity and Specificity , Serologic Tests
8.
PLoS Pathog ; 17(12): e1010162, 2021 12.
Article in English | MEDLINE | ID: covidwho-1595940

ABSTRACT

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.


Subject(s)
COVID-19 , Disease Models, Animal , Macaca nemestrina , Monkey Diseases/virology , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Immunity, Humoral , Lung/immunology , Lung/virology , Male , Monkey Diseases/immunology , Monkey Diseases/pathology , Monkey Diseases/physiopathology , T-Lymphocytes/immunology
9.
Viruses ; 14(1)2022 01 01.
Article in English | MEDLINE | ID: covidwho-1580395

ABSTRACT

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Animals , Chlorocebus aethiops , Disease Models, Animal , Evolution, Molecular , Mutation , Polyproteins/genetics , RNA, Viral/genetics , Rectum/virology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Proteins/genetics
10.
Front Cell Infect Microbiol ; 11: 753444, 2021.
Article in English | MEDLINE | ID: covidwho-1555153

ABSTRACT

SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.


Subject(s)
COVID-19 , Viral Envelope Proteins , Animals , Antibodies, Neutralizing , Humans , Macaca mulatta , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
QRB Discov ; 1: e5, 2020.
Article in English | MEDLINE | ID: covidwho-1287738

ABSTRACT

We propose the nasal administration of calcium-enriched physiological salts as a new hygienic intervention with possible therapeutic application as a response to the rapid and tenacious spread of COVID-19. We test the effectiveness of these salts against viral and bacterial pathogens in animals and humans. We find that aerosol administration of these salts to the airways diminishes the exhalation of the small particles that face masks fail to filter and, in the case of an influenza swine model, completely block airborne transmission of disease. In a study of 10 human volunteers (5 less than 65 years and 5 older than 65 years), we show that delivery of a nasal saline comprising calcium and sodium salts quickly (within 15 min) and durably (up to at least 6 h) diminishes exhaled particles from the human airways. Being predominantly smaller than 1 µm, these particles are below the size effectively filtered by conventional masks. The suppression of exhaled droplets by the nasal delivery of calcium-rich saline with aerosol droplet size of around 10 µm suggests the upper airways as a primary source of bioaerosol generation. The suppression effect is especially pronounced (99%) among those who exhale large numbers of particles. In our study, we found this high-particle exhalation group to correlate with advanced age. We argue for a new hygienic practice of nasal cleansing by a calcium-rich saline aerosol, to complement the washing of hands with ordinary soap, use of a face mask, and social distancing.

12.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: covidwho-1076050

ABSTRACT

BACKGROUNDCirculating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples.METHODSA CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons.RESULTSCRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results.CONCLUSIONResults of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection.TRIAL REGISTRATIONClinicalTrials.gov. NCT04358211.FUNDINGDepartment of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.


Subject(s)
COVID-19/blood , COVID-19/virology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2 , Adolescent , Adult , Aged , Animals , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , CRISPR-Cas Systems , Child , Child, Preschool , Disease Models, Animal , Female , Humans , Infant , Longitudinal Studies , Macaca mulatta , Male , Middle Aged , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity , Time Factors
13.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1075324

ABSTRACT

COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.


Subject(s)
COVID-19/physiopathology , COVID-19/transmission , Exhalation/physiology , Obesity/physiopathology , Aerosols , Age Factors , Animals , Body Mass Index , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Humans , Mucus/chemistry , Mucus/virology , Obesity/epidemiology , Obesity/virology , Particle Size , Primates , Respiratory System/metabolism , SARS-CoV-2/isolation & purification , Viral Load
14.
JACC Basic Transl Sci ; 5(11): 1124-1126, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-893977
15.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-866798

ABSTRACT

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

SELECTION OF CITATIONS
SEARCH DETAIL